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School Mathematics Newsletter (SMN )

Foreword

The School Mathematics Newsletter( SMN )is for mathematics
teachers. SMN aims at serving as a channel of communication
for mathematics education in Hong Kong. This issue includes
articles written by academics, principals and teachers. Most
articles are about STEM education, its concept and the school-
based implementation strategies. Some articles are about the
learning and teaching of mathematics. Learning mathematics
through technologies is also included in the second to last
article, written by Dr TAN. The last article, “Magic Squares and
Algebra” is contributed by Dr Mark Saul. He tactfully matches
two ideas together. | hope all the readers can get some
fascinating insights in mathematics education.

SMN provides an open forum for mathematics teachers and
professionals to express their views learning and teaching in
mathematics. We welcome contributions in the form of articles
on all aspects of mathematics education. Please send all
correspondence to:

The Editor, School Mathematics Newsletter,
Mathematics Education Section

Curriculum Development Institute

Room 403, Kowloon Government Offices
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405 Nathan Road
Yau Ma Tei, Kowloon
email: schmathsnewsletter@gmail.com

We extend our thanks to all who have contributed to this issue.
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4. Functions & Relations: Reflection in
Secondary School Curriculum
CHOI Wai-fung, Brian
St. Paul’s Co-educational College

Introduction

This article is a reflection of classroom teaching and learning
experiences of functions and relations in the senior secondary
curriculum. Three aspects will be discussed: functions,
variations and some elementary functions including
exponential functions, logarithmic functions and trigonometric
functions.

1. Functions

(a) Terminology

In functions, quantities are assigned with specific roles such as
independent and dependent variables. Students learn this
concept already in junior form Integrated Science. The main
difference in Science and Mathematics is that the independent
and dependent variables in the former may not be quantified,
e.g. the brands of battery, the types of animals.

Once we represent a variable y as a function of x, say y = 2x —1,
it seems that there is no difference with formulae in junior form
in terms of algebraic manipulations, say change of the subject
of the formula. Nearly all examples of change of subject to a
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certain variable in junior form exercises can give a unique form.
If the formula involves only two variables, we can say that this
is a bijective function. Nevertheless, senior form students
should understand that not all functions are bijective, or in
simple terms, not all relation between two variables can be
expressed with a single subject, say x*y = xy* —1.

(b) Definition

A common definition of function in most of the senior
secondary mathematics textbooks is as follows: “If each value
of x determines exactly one value of y, then the dependent
variable y is a function of the independent variable x.”

Regarding the above definition, it is natural to ask for the
meaning/significance of “one x gives one y”, or “one input
gives one output”. We may consider the cases violating the
definition, such as “one input gives two output”, or “one x gives
many y”. Students may understand more about the definition
when they learn inverse function at a later stage. It is not
necessary to stress too much on this in the introduction. As a
side track, students will learn “two inputs give one output” in
the chapter “Linear Programming” later in senior secondary
curriculum.
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(c) Notation

Next, the notation of function also yields numerous concerns in
learning. Introduced by Leonhard Euler (1707-1783), the
notation f(x) appears to be confusing to some students as if it
is the product of f and x. Actually, when students represent a
function graphically, they can express it as y in terms of x
instead of using f (x) . It seems that the notation f(x) is more
useful in two other chapters instead of in the first chapter of
functions.

In the topic “polynomials”, the remainder theorem and the
factor theorem and its converse are two important constituents.
Let us recall the two theorems.

Remainder Theorem
When a polynomial f(x) is divided by mx—n, where m
and n are constants and m = 0, then the remainder is equal

o)

Factor Theorem & its Converse
Let f(x) beapolynomial, mand nare constantsandm=0.

mx —n is a factor of f(x) ifand only if f[ﬂ):o.
m

Imagine that the two theorems are stated without the use of the
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notation f (x) . It turns out that the theorems look very clumsy.

Remainder Theorem
When a polynomial whose variable is x divided by mx —n,
where m and n are constants and m = 0, then the remainder

: i n
is equal to the value of the polynomial when x = —.
m

Factor Theorem and its Converse
It is given m and n are constants andm=0. mx—n is a

factor of a polynomial whose variable is x if and only if the

. n .
value of the polynomial when x = ~ is equal to 0.

In addition, more conceptual questions about the two theorems
can hardly be asked, as shown in the following examples of
multiple-choice questions in the Hong Kong Certificate of
Education Examination (HKCEE).

[HKCEE 2007 Q.40]

Let f(x) be a polynomial. If f(x) is divisible by x-1,
which of the following must be a factor of f (2x+1)?

A. X B. x-3 C. 2x-1 D. 2x+1
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[HKCEE 1994 Q.37]

P(x) is a polynomial. When P(x) is divided by (5x-2),
the remainder is R. If P(x) is divided by (2—-5x), then the
remainder is

A R. B. -R. C. %R. D.

gl N

e -2,
5

The function notation also demonstrates the beauty and
symmetry of mathematics in the topic “transformation of
graphs of functions”. Let us recall the various types of
transformation of graphs and the corresponding functional
notation.

(In the following table, f(x) is a function and k is a non-zero
constant.)

Translation Reflection | Enlargement/

Reduction

Horizontal | y=f(x+k) | y="f(-x) y = f(kx)
Vertical y=T1(x)+k y=—1(X) y =kf (x)

Consider the second row of the table. The transformations of
graphs along the horizontal direction corresponds to the
algebraic operation “in the bracket” of f (x) . An intuitive way
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of understanding the fact is that the variable x is “in the bracket”,
and the x-axis is along the horizontal direction. Therefore, the
transformations of graphs along the horizontal direction should
be performed “in the bracket” algebraically. The same idea
applies to transformation along the vertical direction. Such
relationship between algebra and coordinate geometry is not
easily set up without f (x) .

2. Variations

Another topic showing the relation between quantities is
variation, which starts with direct & inverse variations in the
curriculum. Indeed, the two variations are specific and simple
examples of single-variable functions. They are natural
extension of the topic “rate and ratio” in junior secondary
Mathematics. In Mainland, they are studied in junior forms
prior to functions in senior forms. So why do we not to
introduce them earlier? Is it because joint and partial variations
are not (necessarily) of single variable?

Next, we will make use of a multiple-choice question of
variation to demonstrate how various topics in Mathematics are
bridged together, and how it is related to mathematical
modelling.
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(a) A case study of Multiple Choice Question

[HKCEE 1995 Q.11]

x and y are 2 variables. The table below shows some
values of x and their corresponding values of y. Which of
the following may be a relation between x and y?

X 2 3 6 12
y 36 16 4 1
1
A. Xoc,ly B. xcy C. Xc—
Jy
D.xOcl E.Xociz
y y

Students usually regard the topic “variation” as an “easy” one.
The reasons are simple: the question types of variation in public
examination seldom change, and the algebraic skills involved
are not difficult to grasp. Yet, the multiple-choice question
above appears to be hard to many students, as it is more
demanding in terms of the understanding of the related concept.

The first question is “How to teach students to solve the
problem?” By elimination, we know that choices A and B are
impossible. It is because as the value of x increases, the value
of y decreases according to the table. Thus, x cannot vary
directly as y to a positive index. For the other choices, we have
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to go back to the essence of the topic: the variation constant.

Consider choice C. If X i then we can letx = L where
Jy Jy

k is a non-zero constant. The description and the fundamental

meaning of k is often overlooked. This is reflected in the

marking scheme of public examination that no mark is

deducted when omitting this part. However, it is indispensable

in solving this problem, as we have x\/yz k. That is, we can

check the values of x,/y for each pair of x and y in the table

and see if we obtain the same value. The same strategy is
applied to choice D ( xy=constant ) and choice E

( xy® =constant ). The answer of this question is C, as

X\N =12 for all the 4 pairs of x and y.

(b) Mathematical Modelling

For a teacher who wants to extend students’ mathematical
thinking, the second question is “If the choices are not given,
how can we find the functional relation between the 2
quantities x and y?”

There exist many different kinds of relation which can be
satisfied by the values of x and y in the table. To start with, we
may ASSUME a simple one: the “power relation” xoc y",
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where n is a constant. Then we can let x = ky" , where k is a non-
zero constant. To find the values of k and n, we can substitute
2 pairs of values of x and y. After obtaining the relation with k
and n known, we then substitute the other pairs of x and y to
ensure that all the 4 pairs of x and y satisfy the same relation.

It is noteworthy about the assumption we made. If this question
serves as a revision in Form 6, at that moment students have
encountered other elementary functions as well. We may ask
students to suggest other possible forms so that they can gain a
better understanding of the features of various functions. For
instance, as x increases and y decreases and x, y >0, we may
consider x=ka’ , where k and a are constants, k >0 and
0 <a<1. Students can realize the importance of the restrictions
on the functions.

Let us continue our discussion with the power relation. In
reality, not all pairs of x and y can satisfy a single relation. There
may be some outliers. Therefore, it is more desirable to plot a
graph with the best-fit line. A natural choice of the graph is a
straight line, and hence we consider logarithmic transformation
as follows:

x = ky"

logx =logk +log y"

logx =logk +nlogy
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Plot the graph of logx vslogy. The slope n is the index of
relation and the vertical intercept logk is related to the
variation constant. At this point, the usefulness of logarithmic
transformation is demonstrated, and perhaps it helps to answer
the question many students ask, “What is the USE of
mathematics?” We can also see the interconnection between
various parts of our Mathematics curriculum, which may seem
to be formed by pieces of topics without linkage.

(c) Modelling beyond Mathematics: STEM?

Furthermore, the method of modelling in previous example is
also applied in other science subjects. In HKDSE Chemistry,
there is an Elective Part called “Industrial Chemistry”. In this
module, the topic “chemical kinetics” also relies on such kind
of modelling strategy.

Consider a chemical reaction: aA+bB — products. It is
ASSUMED that the rate of reaction depends on the
concentrations of the reactants, i.e. [A] and [B] by the “power
relation”: rate =k[A]"[B]", where k is the rate constant, and
the indices m and n are called the orders of reaction with respect
to reactants A and B respectively. Experimentally, we keep the
concentration of, say B, constant, and vary the concentration of
A. Thus, we have rate=k'[A]", which takes the same form as
in the previous section.
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For students taking Mathematics Extended Part, we may give
enrichment of this law of mass action by considering the

differential form [ Al =k'[A]" and apply separation of

variables for first order ordinary differential equation to obtain
the integrated form for 2 cases: m=1and m=1.

The determination of the order of reaction is not merely a
mathematical model, as it may suggest the mechanism of a
chemical reaction. The order is equal to the number of
molecules/atoms/ions/free radicals involved in the rate-
determining step (RDS) of the reaction. Two examples in the
past Hong Kong A-Level Chemistry Curriculum are Sn1 and
Sn2 reactions, namely nucleophilic substitution reaction of
organic halogeno compounds.

In the era of STEM (Science, Technology, Engineering and
Mathematics), many people tend to put the focus on the first
three letters. The role of Mathematics is not obvious. Yet,
scientific investigation and findings can hardly move one step
further to prediction without the role of Mathematics as shown
in the case of RDS. Another example is the subject Physics,
which will take another article for the writer to further discuss.
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3. Exponential, Logarithmic & Trigonometric Functions

(a) Domain, Co-domain, Range

Let us consider several sets involved in functions: domain, co-
domain and range. They are introduced in the chapter
“functions”, in which only constant, linear and quadratic
functions are discussed. In all these cases, the domain is the set
of all real numbers. So what so special about domain? On the
other hand, the term “co—domain” is stated in the syllabus. In
secondary school level, while we consider functions (usually
real-VALUED), it is a safe choice to choose the co-domain as
the set of real numbers. Again, why bother mention this? In
addition, the term “range” is not stressed in the syllabus. Yet in
the section of “quadratic functions”, students learn how to
determine the optimum values of quadratic functions, and write
the following: y =(x—1)>+3>3. They are actually writing
the range of function.

To further discuss the pedagogical roles of domain, co-domain
and range, we investigate several elementary functions. Refer
to the table below:

Domain Range
y=a" All real numbers All positive numbers
y =log, x | All positive numbers | All real numbers
y=sinx° | All real numbers Between -1 and 1,
inclusive
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Domain Range
y=cosx® | All real numbers Between -1 and 1,
inclusive

y=tanx° | All real numbers | Allreal numbers
except 180n+90
where n is an integer.

Students can realize that the set of all real numbers cannot be
the domain of all functions, and the collection of all values of
dependent variable, i.e. the range, may be a proper subset of R
only. Also, note that in the first 2 rows, the domain and the
range are interchanged. So the nature of “inverse function” is
also established, though it is discussed in Mathematics
Extended Part. Hence, in terms of teaching, it is suggested that
the domain and the range should be further emphasized in the
chapters of elementary functions after quadratic functions, and
the term *co-domain” needs not be mentioned.

(b) Graphs of Elementary Functions and Graphical Method of
Solving Equations

Many students are not interested in (some may be even afraid
of) the graphs of various functions. This is rooted in the first
encounter of graphs in junior form. When students learn
graphical method of solving simultaneous linear equations in 2
unknowns, they are constantly reminded that the solutions read
from the graph are inaccurate due to the precision of the keep
and the fact that the point of intersection of graphs may not lie
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on the grid lines. However, the simultaneous equations, even of
1 linear and 1 quadratic in senior form, can be solved by
algebraic method, and the answers obtained are in exact value.
Students can never appreciate the graphical method in these
circumstances and thus regard it as some add-on only.

Indeed, we can convince our students the usefulness of
graphical method in solving simple yet special equations like
2" = x2. Itis not difficult to see that x =2 and x =4 satisfy the
equation. Yet, it is a much more demanding task to find other
solutions, let alone to show that the number of solutions is 3.
Let us plot the graphs of y =2* and y = x*, and find the points
of intersection. With advanced information technology, there
are many resources on the web that help students to plot graphs
accurately. As seen from the graph below, a solution of
x =-0.767 can be obtained. We can also explain that there are
no more solutions by referring to the behaviour of the quadratic
and exponential graphs for x <0 and x > 4. Students thus can
understand that the rate of increase of an exponential graph is
larger than that of quadratic graph, and this is a starting point
for students to investigate and to compare exponential graphs
with polynomial graphs. In short, if we extend a single variable
equation in x to graphs of functions with both x and y, we can
obtain much more insights.

Concerning exponential and logarithmic graphs, students
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should know that the two graphs y =a* and y =log, x (where

a >0, a=1)are symmetrical about the straight line y = x.. This

can be related to the concepts of independent and dependent
variables, and also the domain and the range.

4o 3
¥ .- .
N #

(4,16)

Very often, when we compare the graphs of y=a" and
y =log, X, the value of a is deliberately chosen to be in the

range a >1. In this case, there is no point of intersection. What
: 1 :
if 0<a<l, say a ZE , how many solution(s) does the

equation (%) =log, x have? What is/are the solution(s)?

2

How about the general case, (ij =log, x , where a is a
a -

a

constant and a >1? We start from studying some particular
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cases to derive a more general pattern, and here the graphs of
functions play a vital role.
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5. Inspiring Experience from Self-Preparation of
Teaching Handouts
IP Ka—fai Gavin
Queen Elizabeth School

As a proactive mathematics teacher in this generation, I am
always enthusiastic about reviewing the latest pedagogy and
innovative ideas for educational development in Hong Kong.
Since | began my teaching profession at the turn of this century,
I have been devoting aggressively to edit my own teaching
handouts for all forms to supplement the teaching, and my
student feedback and learning outcome were mostly inspiring.

I would edit my own set of colored teaching handouts without
using the textbooks. Each handout consists of theoretical part
introducing and explaining the theorems and formulas
concerned, followed by tailor—made examples of different
objectives and formats with detailed problem solving analysis
before abundant exercises of varied difficulties are assigned for
student practices in lessons and after school. The effectiveness
IS even better in senior forms due to their higher maturity on
guided, self-directed learning and their more willingness in
doing pre—lesson assignments before thorough discussions of
step—by-step solutions in lessons.
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Figure 1 and 2 — Two completed whiteboards of my
Mathematics Module 1 lessons.
All students have to do pre—lesson work before class
attendance every time.

If you have the habit to prepare own teaching materials for
students, you may share a similar feeling that the biggest
problem is unlimited time consumption. | would like to share
my own experience in preparing the handouts. | need to spare
most of my long holidays and vacations to think, to draft, to
calculate, to edit and to prepare the written solutions for each
handout. The drive, determination and effort exerted are
beyond description and | was often asked by my family,
colleagues or alumni why | kept on doing so.
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Who does not want to enjoy a long vacation truly without
schoolwork? In my opinion, however, self—preparation of
teaching handouts has the following advantages to facilitate our
teaching that outweighs the costs of additional time and efforts
in preparation. These advantages are what motivate me to
prepare my own instructional handouts for over 10 years’ time.

1. Cater for Learner Diversity

| believe most teachers would agree with the increasing
diversity of students when our school banding was reduced
from five to three in 2001. This makes the learner difference
increase even the majority of schools have grouped
students with similar ability level into the same class. As
professionals, we commit to achieving equity for all students
and believe they are capable of making a difference in learning.
To help our students perceive their tasks as meaningful, the
best solution is that we prepare and provide the tailor-made
learning materials for them.

We should be aware of different abilities and learning needs of
students to give corresponding assistance for their full
development of multifaceted potential. Using our professional
knowledge, tailor-made learning handouts can best suit the
characteristics of your students by offering more user—friendly
and appropriate materials. The majority of students would
also appreciate the extra efforts and care the teachers show to
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them by preparing extra handout, which is beneficial to
cultivating a good teacher—student relationship.

In my personal experience, it can definitely increase the student
learning motivation and enthusiasm in attempting mathematics
problems in the handouts. As the materials cater for their
abilities, their job satisfaction will be higher which results in
increased self—confidence accordingly. Under
such favorable conditions, their academic results can be most
likely guaranteed.

Some teachers have asked me if major amendment is needed
every year to cater for students of different forms. It is not
necessary except some minor changes of wordingin the
explanatory part and the level of difficulty of exercises offered
in adjustment, if you are teaching in the same school. My
experience is that over 90 % of the content could be kept, so it
is always the first step being the hardest. As long as you
persevere, you are bound to succeed in modifying the content
slightly and continuously to suit students of different abilities.
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2. Textbook Re-Edition of Publishers

The Education Bureau has launched a new policy since summer
2009, the same year as the start of our New Secondary School
Curriculum (NSSC), in which the publishers were allowed to
revise their editions only 5 years after the original editions were
launched. Its introduction has a good intention to the
public that the financial burden of parents could be reduced due
to the price reduction of corresponding textbooks.

Nevertheless, the  largest  drawback  would  be
the ineffectiveness of matching up the textbooks' written
contents with the examination trend of HKDSE. The
curriculums had slight changes in 2013 and 2015 for either
Compulsory Part or Extended Modules, while the diversity of
questions of HKDSE is clearly broader than the former
HKCEE. My impression is that during the first several years of
NSSC, the publishers include all potential contents in their
textbooks, in which the depth of treatment are over the
curriculum requirement.

Only 3 out of 6 publishers, who had launched S.4 — S.6
Compulsory Part textbooks, revised their editions in 2014.
Moreover, it was a great shock that for Extended Modules 1
and 2, the numbers of new editions were even 1 and 2
respectively. The lack of investment and updates would render
the textbooks obsolete for the public examination requirement.
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Many authors are not frontline teachers and they may be
unfamiliar with current teaching environment.

3. Limitations of Textbooks on Markets

The number for revised
textbook editions IS
insufficient. Another
drawback to me is that, the
editorial style is too similar to HKCEE era that it has not
catered effectively for the changing objectives of the new
Mathematics curriculum and the public examination.

In my observation, the quality of questions shown in some
textbooks is yet to be improved. For example, the exercises
offered in some textbooks are very suitable for some lower—
achievers according totheir level of difficulty and the
varieties; however, the higher—achievers would find it boring
to tackle many similar—type problems that are easier than the
public examination questions. When the textbooks are suitable
for certain type of students, it is problematic that they cannot
cater for the individual needs of other students of the same form.
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Experimental documentation and knowledge inheritance

I am always delighted to have a commendable opportunity to
explore, to compare and to evaluate different methods that can
be used effectively. The frontline teaching experience has also
inspired my eagerness to analyse further on implementation of
effective strategies that can optimize students’ interest and
learning outcome in Mathematics.

Unlimited innovative ideas had been generated in my mind at
my different teaching moments, e.g., the introduction of
specific mathematical concepts, the explanatory choices, the
way of selection of examples and exercises, the highlight of
problem solving strategies and skills, etc. | need to record them
systematically and utilise them in my latter part of the teaching
career. Preparation of own teaching handouts facilitates such
experimental documentation and ensures the knowledge could
be efficiently continued.

I want to emphasise that as frontline teachers, we are
the ones who understand the students the most. We
should strive to adopt pedagogies through which students learn
best and most comfortably. Self-prepared teaching materials
suit and cater for students’ needs the most.
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After introducing the advantages
: : R

of preparing teaching handouts for E”,m_m_m
students, | would like to share my

. R kg mae
personal experience in Writing my "z o A
latest handouts of Extended “
Module 1 as an illustration, using
Differentiation and Integration, the
most difficult component of the
curriculum, for some in—depth discussion and brainstorming.

B m flz)nL

It is my honor and my pleasure to share and to discuss with all
teaching colleagues for further development and improvement.
Should you have any new idea, opinion or suggestions, please
do not hesitate to reach me using the given electronic mail
account.
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Teaching the Theoretical Part

| used to search different textbooks before deciding my own
approach in teaching the theory. We can also explain using
some Pithy formulas, which rarely appeared in textbooks, to
help students memorising theories with more fun and ease. The
following is a part of my handout teaching Chain Rule ( 4& 3"
% ). Let us see if it helps our students.

Chain Rule ( 425 ;2 B] ): If y = g(u) and u = h(x) are two
differentiable functions, then the derivative of the composite
function y = g[h(¥)] is given by

d d d
&g[h(x)]zag(u)x&h(x).

In general,

;—X(klx"l +k,x" + )n =n (klxnl +k,x" + -.-)n_l(klnlxnrl +kn, X" 4 )

Many students commit mistakes by forgetting differentiations
of certain layers (inner functions). It is necessary to distinguish
the outer and inner functions correctly in using Chain Rule.

Its pithy formula ( v 2% )is: |d #h 3 p o A48 £ d |
NITEEYY

o
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We may easily memorise the Chain Rule as Derivative of a
Composite function = (Derivative of Outer Function) x
(Derivative of Inner Function).

If you use the theoretical format of Chain Rule in explanation,
some students may find it hard to understand and they often
forget to differentiate the composite functions layer by layer for
the right answer. To consolidate their memory and to maximize
their chance of obtaining the right derivatives, | try to explain
it using colloquial language with the help of my self-designed
pity formula, and | found my students have really worked better
in differentiating those advanced functions.

4. Introduction of Miscellaneous Problem Solving
Strategies in the Examples

a) We have Product and Quotient Rulesin which the
students would use according to their preference, but our
textbooks would usually present one solution format only,
which has limited the students’ choices and exposure. The
following example, which is quoted from my
handout, highlights three  different  problem-solving
methods with detailed explanation in lessons so that the
students can discuss and decide which method is most
feasible for them.
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4
Example: Differentiate y = ( X+1 ) with respect to x.

3x-1
(Method 1 — Use Chain Rule and Quotient Rule in Order)
dy _4( x+lj31( x+1j
dx  \3x-1) dx\3x-1
(Chain Rule)
s(3x—1)i(x+1)—(x+1)i(3x—1)
_ (XHJ dx dx
3x-1 (3x-1)°

( Quotient Rule)

_A(x+1) Bx=D@) - (x+1)(3)
- (3x-1)° (3x —1)?

A+ 4 -16(x+1)
S (Bx-1° (3x-1)?  (3x-1)f

(Method 2 — Use Quotient Rule and Chain Rule in Order)

y:[ X+1j“: (x+1)"

3x-1) (3« —1)4

2017 52



4 d 4 4 d 4
d_y=(3x—1) &(x+l) —(x+1) &(3X—1)

dx [(3x-1)*T

( Quotient Rule)
e d(x+1)" d(x+1) +d(3x-1)" d(3x-1)
(3x-1) d(x+1) dx (x+1) d(3x-1) dx

(3x—1)8
(Chain Rule)
CBx-D)*[A(x+D*() |- (x+D)*[ 4(3x-1)°(3) |
- (3x—1)°

AR —1)*(x+1D)°[(3x—1)—3(x+1)]
B (3x —1)°

( Taking Out Common Factors )

_A(x+Xx)°(-4) _ -16(x+1)°
O (Bx=D* (3x-1°

(Method 3 — Use Product Rule and Chain Rule in Order)
y=(x+1)*'@x-1"

( From Quotient to Product Format )
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dy = (X +1)4i(3x D+ (Bx-1)" i(X +1)*
dx dx dx

( Product Rule)

Y- (xr 1) [ - @ ]+ Gx-*[Ax+1)]
( Chain Rule)

=4(3x-1)°(x+1)°[-3(x+1) + (3x -1)]
( Taking Out Common Factors)

~16(x +1)°

=4(3x -1 °(x+1)°(-4) = (3x_1)

I prepared this example after exploring to different works of
my students these years. For Method 1, we have the remaining
inner function being (x + 1)/ (3x — 1) after applying Chain Rule
in the first step. It is thus simple for further differentiation using
Quotient Rule.

For Method 2, however, using Quotient Rule firstly would
result in the degree of denominator being 8 and the numerator
would contain complex terms of degree 4. Further
differentiation is thus difficult and careless mistakes are more
easily appeared. | guide the students to aware of their
differences and agree that Method 1 is more preferable from its
easier simplification compared to Method 2.
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Method 3 provides an alternative by rewriting y as negative
index and applying Product Rule for differentiation instead.
This caters for students who are weak in using Quotient Rule
but are eligible in using Product Rule, and I really have such
type of students before!

It is always encouraging if the students can use their own
approach to solve problems correctly. By the same time, we
may widen their horizons and provide alternatives for their
problem solving, so the students can compare and choose the
best method themselves, and they can have more tools in their
mind to tackle the problems.

b) For advanced learners, they can be capable to skip the
Substitution Method at the early stage on Indefinite
Integrals, while some others cannot abandon with the
complexity of integrands. | used to introduce both methods
at the very early stage for their choice and they would
decide themselves when they are confident enough in
integration without using the tedious Substitution Method.
Let us see the example, which | quoted from my teaching
handout below.

Example: Find the following indefinite integrals:

(a) J'3x2ex3dx
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( Method 1)
Letu=e*.

" du_ 3x%e*
dx

(i.e. du=3x% dx )

j3x2exsdx = jdu
=u+C

—e“ +C

( Method 2)

.[3x2exsdx = Iexsdx3 —e* +C

(0) J-(Inx)2 i
X

Method 1 2
( ) j(lnx) N
Let u=Inx X
du 1 dx
. —== = | (Inx)*- =
dx x I(nx) X
(i.e. du _ L ) :J'uzdu
X
3
“Lic
3
:—(Inx)3+C
( Method 2)

j@dx = [ (inoy?d (Inx) :%(In X)? +C

Note: Unless the question requires us using a specified
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substitution or the derivative of u with respect to x, we can opt
out from showing clearly how x is changed to u.

Method 2 is catered for students who have developed the sense
for integration in a faster way, without writing in details the
conversion between two variables using method of substitution.

I like to address some comments after the example for
comparing the pros and cons of two methods, and my students
like to read and to deliberate which method of problem—solving
suits them best. The note after each example is particularly
helpful for those self-learners who read the handout before
lessons and drill after school, which provides -clearer
explanation for them to understand before lesson attendance.

Effectiveness and Reflections of using Self-Prepared
Teaching Handouts on Teaching

Due to limited space of this publication, | could not quote too
much to elaborate the techniques in writing a well-organised
handout and introducing numerous mathematical concepts for
students using our innovative perspectives. It is never easy to
edit a handout originating from your own style. My own
experience tells me that the first time is harshest which starts
from none. We can modify the existing handouts since then
with lesser effort and you would find it comfortable doing so.
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If you have the determination working out your first edition,
you would be encouraged from the job satisfaction in
preparation stage and the student appreciation in usage for
revised editions in future. Most importantly, the handouts have
summarized what you need to teach and what you want to say
that facilitates your knowledge inheritance in and out of
classroom.

My students, in which | use my own teaching handouts
throughout the senior levels, obtained very remarkable results
in 2017 HKDSE. Use Module 1 as an example for illustration,
66.7 % of my students achieved Level 5 or more while all 100
% students achieved Level 4 or more! This is such an amazing
result compared to other local Band 1 schools and our own
results of previous years, showing the effectiveness of self—
preparation of teaching handouts to arouse students’ interest in
learning and to improve their academic performance. The
similar good results apply on my other classes throughout my
teaching career.

My upcoming target will be the incorporation of STEM
elements into our normal teaching. Being a successful
candidate of the Staff Interflow Scheme 2017, the six-month
attachment in Mathematics Education Section, Curriculum
Development Institute was not limited to experience sharing
and knowledge transfer. The program fills me in on the latest
educational policies and development thoroughly, and it offers
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me an occasion to reconsider seriously what directions | should
take as an experienced teacher going forward after devotion for
over a decade.

I was so honored to engage comprehensively in the “Seed”
Project about “Exploration and Development of Effective
Strategies for Promoting and Implementing STEM Education
in Secondary Mathematics”. My main responsibility was to
initiate and to design tailor-made STEM exemplars, with
Mathematics as the key learning element in both junior and
senior levels.

After playing an active role as the “designer” of many
exemplars, 1 am confident to say that Mathematics can also
play a major role in STEM education. | am enthusiastic to add
the STEM concept into my self—prepared teaching handouts in
future for widening students’ horizons and making the lessons
more fruitful.
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9. Julia Robinson Mathematics Festival in Hong Kong
and Mathematics Circle Learning Technologies
TAN Chee-wei
City University of Hong Kong

cheewtan@gmail.com

Abstract

The Julia Robinson Mathematics Festival

(http://www.jrmf.org) is one of the events in which students
have the opportunity to develop their talent in mathematics by

providing a wide range of problems, puzzles, and activities that
are intriguing and accessible in a non-competitive atmosphere.
The inaugural Julia Robinson Mathematics Festival in Hong
Kong was recently held on 1% April 2017 at the Singapore
International School (Hong Kong), during which a diverse
audience of students, educators and people passionate about
mathematics gathered with the goal of broadening the society's
appreciation and support of mathematics. Personalized
learning technologies that facilitate Math Circle Learning
through Mathematics gamification was also introduced. The
Julia Robinson Mathematics Festival in Hong Kong opens up
new pedagogical ways to teach and learn advanced
mathematics.
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Introduction
The inaugural Julia Robinson Mathematics Festival in Hong

Kong (www.algebragamification.com/jrmf) was held at the

Singapore International School on 1% April 2017 in partnership
with the U.S. management of the Julia Robinson Mathematics
Festival and the American Institute of Mathematics [1]. The
Director and Co-Director of the Festival organization are Dr.
TAN Chee-wai and Mr. Jian SHEN respectively. Dr. Mark
SAUL, who is the Executive Director of the Julia Robinson
Mathematics Festival, Professor Tony CHAN of HKUST and
Mr. Bernard NG of the Singapore International School (Hong
Kong), support the festival. The organizers of the Julia
Robinson Mathematics Festival in Hong Kong aspire to make
mathematics accessible to every student of all abilities. The
goal is to encourage students to focus on collaborative problem
solving, as opposed to the competitive nature commonly
founded in mathematics examinations and contests. In this way,
students can enjoy the richness and beauty of mathematics

without any anxiety.

Over the years, The Julia Robinson Mathematics Festivals
(http://www.jrmf.org) has allowed young people to develop

their talent in mathematics by providing problems, puzzles, and
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activities that are intriguing and accessible in a non-
competitive atmosphere. Founded by Nancy Blachman, the
name of the festival honors the memory of Julia Robinson, a
mathematician recognized for her work in solving Hilbert's
tenth problem, and the festivals seek to encourage more
students to pursue mathematics [2,4]. The JRMFs began at
Google in the San Francisco Bay Area in 2007, and have since
expanded into many other cities around the world. The year
2017 marks the tenth anniversary of JRMF, and besides the
JRMF in Hong Kong, JRMFs also took place in Taiwan and
Mainland China in 2017.

At the JRMF in Hong Kong, the participants were a diverse
audience of 243 students, aged 10 to 14, all of whom were
passionate about mathematics and gathered for two hours to
explore the joys and power of mathematics. The goal is to
broaden the society's appreciation and support of mathematics.
At the Festival, there were twenty tables, each with its own
unique fun and challenging mathematical theme (such as
mathematical origami, games and puzzles), and each table was
staffed by a facilitator. Participants could roam around from
table to table and choose to work at a table that they felt

interested. The spirit of the Festival was that there was no
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pressure for the student to finish any task. The facilitators were
faculty staff members and students from local universities,
school teachers and practicing mathematicians in the industry.
As students worked on mathematical problem sets, they were
rewarded with a raffle ticket based on their persistence and
collaborative learning attitude with their peers. Thirty raffle
prizes such as Festival T-shirts, math games and books were

given out at the end of the festival.

For the first time, mobile app software, that we have developed
(described below) was used at the JRMF for students to
develop a stronger intuition to the mathematical problems
through observation and experimentation. Even after the
Festival had concluded, the mobile app software could allow
students (their parents and teachers) to relive the experience of
the festival, and thus further encouraged collaborative problem

solving among peers.

Mathematical Problem Set Design

The JRMF mathematical problem sets are carefully designed in
a way such that they are initially easy and become
progressively challenging. In this way, students can gain

confidence at the beginning and also develop the right intuition
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to tackle the more challenging mathematical aspects at the
latter part of each problem set. From a pedagogical viewpoint,
the harder problems, even when unsolved, can in fact pique
their curiosity. Hence, the intention is for the students to walk
away with some sense of accomplishment and to have a new
understanding of a mathematical problem, rather than to give
superficial answers to the problem sets with poor

understanding.

To get a feel of the difficulty level of the mathematical problem
sets used in the Festival, one of the mathematical problem sets
that involve notions of probability theory is shown below. We

call it “A Number Game of Randomness™:

I draw two cards from 13 poker cards, say, 1,2,..., KING=13,
that are completely unknown to you, and hold one in my left
hand and one in my right. You have absolutely no idea what

these two numbers are. Which is larger?

You can point to one of my hands, and I will show you the
number in it. Then you can decide to either select the number
you have seen or switch to the number you have not seen, held

in the other hand, as your final choice.

1. Is there a strategy that will give you a greater than 50
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percent chance of choosing the larger number, no matter

which two cards | draw?
2. Suppose | have infinite cards, labeled from 1, 2, 3, 4,....

Again, | randomly draw two cards from these cards, and | will
show you the number of one of the two cards. Is there a
strategy that will give you a greater than 50 percent chance of

choosing the larger number?

This Number Game of Randomness is a deep mathematical
problem with roots in information theory and probability
theory. We observed that students who did not have any notion
of probability theory could still logically deduce nontrivial
insights to problems that looked deceivingly simple and
straightforward. All other interesting mathematics tables had
equally novel titles to pique the curiosity and interests of the
students. Figures 1 shows the math tables for “Color Triangle

Challenge” and “Modular Origami” respectively.
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Figure 1: Math tables for “Color Triangle Challenge” and

“Modular Origami” on the left and right respectively. The

capacity of each table is ten students.

Below are two actual problem sets used at the Festival: the
Tower of Hanoi and the Exploding Dots puzzle, also used at
the 2017 Global Math Project. We devise the latter puzzle as

one that connects with a past International Math Olympiad
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(IMO) question towards the end — again highlighting our style
of progressively difficulty levels in our problem sets.

American Institute
of Mathematics

Julia Robinson
Mathematics Festival

JRMF at the Singapore International School (Hong Kong), 1 April 2017

The Tower of Hanoi - and Beyond

Legend has it that in Hanoi there is a tower of 64 disks of different sizes, initially all stacked on
peg A as shown, and a group of monks working tirelessly to move the disks from peg A to peg B.
Only one disk at a time may be moved, and at all times only a smaller disk may ever be on top of
a larger (never a larger on top of a smaller). When the monks complete their task, the legend says
the world will end.

1. Perhaps this is too easy, but how many moves will it take to complete the moving of the
tower if there is only one disk?

2. How many moves will it take if there are two disks?
3. How many moves will it take for three disks?

4. How long will it take for four disks? Generalize. How many moves will it take for n

disks?

5. If the monks never make a mistake, and can move one disk every second, 24 hours per
day. how many years will it take for them to complete their tower of 64 disks 7
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American Institule
uf Mathematics

Julia Rabinson
Mathematics Festival

JRMF at the Singapore International School (Hong Kong), 1 April 2017

Exploding Dots

A special machine called the 2-=1 machine consists of a row of boxes that stores dots. All the dots
mitially put into the machine weighs 1 gram, and are put into the nightmost box in the machine.
Two types of operations are allowed:

Type I: Remove a dot in a box, and put two dots in the box immediately to its rnght
Type 2: Remove two dots 1 a box, and put one dot 1n the box immediately to 1ts left.

Note, however, that the total weight of the entire machine does not change.

For example, the two machines below contain different numbers of dots, but the dots both weigh

3 grams.

LN ]
® L o
2-gram box 1-gram box 2-gram box 1-gram box

1. The dot in the rightmost box of this Exploding Dots Machine weighs 1 gram. Answer the
following questions. Feel free to simulate this using the model on your table and count the total
amount of grams using the right-most box only. Then, figure out the weight of each dot in different
boxes.

a) How heavy are all the dots combined in this machine?

b) How heavy 1s one dot 1n each of the boxes below. counting from right to left?

1-gram box

A new type of operation. called swapping. is added:
Type 3: With three boxes, remove a dot in box n, and exchange all dots in box n-1 and box n-2.
For example:

[ ] *e o200 o0 0 L 1 ]
boxn boxn-1 boxn-2 boxn  boxn-1 boxn-2
Before After

There can be any number of dots in the second and third boxes, even zero.
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4. Can swapping bring more dots to the machine? Only using the first two operations, the machine
below. with 3 dots. can only form a maximum of 12 dots. Can you get 16 dots, using the swapping
method as well?

box3 box2 boxl

5. Imagine that box n in the machine above had 4 dots, instead of three dots. What is the maximum
number of dots you can form then? What if box n had 5 dots? Show the pattern/relationship.
Feel free to draw on paper if there are too many dots for the table.

Exploding Dots: Challenge Questions

In generalization, for the macline (with only 3 boxes) above, x dots 1n box 3 will form 2+ dots in box
2, and ultimately 2*2x dots in box 1. If you have not already reached this conclusion. do not attempt
the following questions.

6. [Challenge] Imagine that another box with one dot, box 4. is added to the left of the machine.
What 1s the maximum number of dots you can form with the machine below? What 1f box 4 had 2
dots, 3 dots, or x dots?

box4 box3 box2 boxl

7. [Challenge] Remove all dots from box 4 except for one. Add a final box. box 5. to the left of the
machine, and put 1 dot in there. What is the maximum number of dots you can form with this
machine? Feel free to explore beyond these questions, and try to obtain different large numbers using
the three operations allowed.

box5 box4 box3 box2 boxl
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Figure 2: “Tower of Hanoi” Table with both the mechanical
manipulative and the digitalization of the logical aspects of
the puzzle in a mobile app software.

At some of the mathematics tables, we experimented with the
use of technologies for learning mathematics. Certain logical
aspects of mathematical problem sets were digitalized and
transformed into a mesmerizing game (i.e., we could view “toy
examples” in mathematics as literally a “toy” that could be
manipulated or played with). This would enhance the appeal of
the mathematical problem sets, when presented to the students,
rather than the abstract elements. Certainly, abstract thinking as
required in advanced mathematics often starts with curious
observations and simple experimentation. In conjunction with

the Festival preparation, various mathematics gamification
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(digitalization of the logical mathematical elements and turning
them into small games at the entry level of a problem set) were
incorporated into the mobile app software (described in the
next section). In Figure 2, we see a young participant at the
mathematics table for “Tower of Hanoi” experimenting with
both a mechanical puzzle manipulative and digitalization of

this puzzle incorporated into our mobile app software.

Mobile App Learning Software

The mobile app software JRMF App, used for the first time at
the JRMF, allows students to develop a stronger intuition to the
mathematical ~ problems  through  observation  and
experimentation. The mobile app software is available for
download at major mobile app stores, e.g. the iOS App Store
and the Google Play Store [3]. A dedicated website for the
mobile app software IS available at:

http://www.algebragamification.com/jrmf/app.

Our personalized learning technologies are based on
mathematics gamification, which is defined as the process of
embedding mathematical concepts and manipulations within

puzzle-like instantiations. These software instantiations of
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mathematics gamifications can be delivered in several
possibilities. We have chosen to deliver them by mobile app
software that presents potentially strong opportunities for
students to learn advanced mathematics in a systematic manner

and usable even long after the festival concludes.

The benefit of this mobile app learning software for
personalization learning is clear: through experimentation and
curious observations, students acquire useful insights into the
mathematical subject at hand that otherwise will not be obvious
or found in traditional classrooms. The engaging game-like
nature of mathematics gamification motivates students to peer-
help one another as well as allows classroom teachers to use
them as instructional tools for students to gain proficiency in
mathematics at their own pace. As illustrative example, Figure
3, shows the opening interface that reports progress and
navigates the user to some of the problem sets whose
mathematical nature has been gamified. Figure 4 shows the
“Tower of Hanoi” game whereby a user starts playing from an
easy level of a single disc and then progresses through levels
with an increasing numbers of discs. It also offers students to
learn about the deep mathematics behind new mathematical

games such as the Algebra Game developed in the Algebra
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Game Project founded by the author [5] (going into the realm

of number theory that otherwise is not apparent to a casual
player).

Carrier & 2119 PM L1l

Julia Robinson Mathematics Festival

Profile

Progress on Mathematics Learning

Julia Robinson
Mathematics Festival
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Carrier & 2:18 PM -

Julia Robinson Mathematics Festival

Problem Sets

Tower Of Hanoi Difficutty

Exploding Numbers Difficulty

Number Game Difficutty

Algebra Game Difficuty

Figure 3: Opening interface of the JRMF App is freely

available for download at iTunes App Store and Google Play

Store.
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Carrier = 2:18 PM -

Carrier ¥ 2:18 PM -
Close Tower Of Hanoi € Question 2 Question 3
How many moves will it take for three disks?
{ Let's start } ]

Description:

Legend has it that in Hanoi there is a tower of 64 disks of
different sizes, initially all stacked on peg A as shown, and a
group of monks working tirelessly to move the disks from peg
Ato peg B. Only one disk at a time may be moved, and at all
times only a smaller disk may ever be on top of a larger
(never a larger on top of a smaller). When the monks
complete their task, the legend says the world will end.

N YT
@
A

Moves: 0

Figure 4: Tower of Hanoi problem set in the JRMF App:
Problem background introduction and game-quiz format.
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Conclusion

The Julia Robinson Mathematics Festival in Hong Kong has
successfully reached out to many students and math enthusiasts
not just in Hong Kong but also regionally (e.g., the U.S.,
Mainland China and Taiwan). We expect more of these global
collaborative efforts to promote mathematics learning in
intriguing and non-competitive ways. We showed the efficacy
of mobile app software in Math Circle. We believe that
personalized learning technologies can be created and tested
for this purpose. At a meeting in August at the 2017
Mathematics of Various Entertaining Subjects (MOVES)
Conference [5] in New York City with the JRMF founder, Ms.
Nancy Blachman, (see Figure 5), we have discussed prospects
of further collaboration to promote learning advanced
mathematics in Hong Kong, in the Greater China area and

beyond.
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Figure 5. Meeting between Julia Robinson Mathematics
Festival Founder Nancy Blachman and Prof. Tan at the 2017
Mathematics of Various Entertaining Subjects (MOVES)

conference in August 2017.
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10. MAGIC SQUARES AND ALGEBRA
Mark Saul, Ph.D.
Executive Director, Julia Robinson Mathematics Festival

My readers are likely to have seen the classic topic of the title
of this article. After all, it’s thousands of years old. From the
ancient Chinese Lo Shu to the well-known engraving of
Albrecht Durer, magic squares have appeared in mathematical
folklore, and even more general folklore, for ages.

In the classroom, magic squares are usually seen as brain
teasers, or venues for practicing addition. In this article we will
show how they can actually be used to introduce, and even
develop, concepts from higher mathematics that will serve
students well from elementary school through graduate
education.

A magic square is a square filled with numbers such that the
sum of each row, each column, and the two diagonals is always
the same. We will limit ourselves here to 3x3 magic squares.

The first thing I do with magic squares is to have students
construct their own. Now, there are well known rules for
constructing magic squares. (The “knight’s move” rule is
perhaps the best known.) My goal—unbeknownst to the
students—is not to find an efficient and general way to
construct a magic square. Rather, | want to follow a path that
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will afford students the most discovery on their own.

Let us not be coy. Most readers will have seen the most
common magic square:

294

753

618

We will have students construct this magic square themselves,
and learn some valuable lessons on the way.

Activity I: The Rows

| give students cards, or slips of paper, with the numbers
{1,2,3,4,5,6,7,8,9} written on them, and ask them to form three
rows of three cards whose sums are all the same. Just the
rows—we will get to the other conditions later. This isasimple
task for even very young students. If they are not sure how to
go about it, we can scaffold them. Just deal out three rows of
three at random, and ask them which row has the largest sum,
and which the smallest—which rows are “fattest’ and which are
‘thinnest’. Then show them that they can make the sums closer
by ‘trading’ a high card in a fat row for a low card in a thin row.
After a series of such trades, most students are able to achieve
three rows with equal sums. Note that this construction is not
quite algorithmic. Nothing is telling the student just which
cards to trade. They have to use their intuition and try various
combinations until they get it right. The goal is not to develop
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an algorithm.

There is a lesson to be learned from the three equal rows, by
asking the students what the common sum of the three rows is.
Most are not surprised that the answer is always 15. Somehow,
15 seems the ‘right’ number—not too big and not too small—
to be common to the three rows. This intuition can be
sharpened into a proof: the sum of all nine numbers is 45, so if
they are put into three groups (rows or otherwise) with equal
sums, that sum must be 15.

Not every student will think of this argument, but starting at
about 10 years old, most will follow it. Moreover, we can find
out, later in the discussion, if they have followed.

Activity II: The Columns

Having constructed three rows with equal sums, the next task
is to make the column sums equal, while keeping the row sums
equal. Students see, or guess, that the column sums must also
be 15 (and some can restate the argument for this).
Nevertheless, how to achieve it without disturbing the rows?

This is a bit tricky, and I usually end up giving students a hint:
continue to ‘trade cards around’, but trade them only within a
single row. That way the row sums are not changed, but we
can even out the column sums.
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There are some pitfalls in this step—the most ‘dangerous’ in
our construction. Sometimes a student will get one column-
sum to be 15, but cannot get the other two to ‘behave’. The
problem is that the student’s 15-column is the wrong one.
Holding it constant will prevent the other columns from falling
in line.

Here is something we should know as teachers, but we cannot
expect the students to know. Of the numbers {1,2,3,4,5,6,7,8,9},
there are only 8 subsets of 3 elements that add up to 15. This
can be proven, for example, by a direct count!. In fact, these
eight subsets are just the rows, columns, and diagonals of the
magic square we want to construct. So if a student has a
column that ‘should be’ a diagonal, it will block the other
columns from falling into line. Such a ‘bad column’ (whose
sum is 15) is not hard to recognize. It is a column with 5 in it,
and two even numbers (we will prove this with the students
later). Therefore, the pattern ESE (in any order) is the Signature
of Death. When a student has a ‘bad column’, it is best for the
teacher to intervene to get him or her unstuck.

1 Counting these subsets is a good exercise for advanced
students. One nice argument is to observe that every subset
must contain one number from the set {1,2,3,4} (or else the
sum will be too large), and one number from the set {6,7,8,9}
(or else the sum will be too small). We can make a 4x4 ‘table’
giving the third number in the subset, then cross out duplicates
(as well as subsets with two ‘copies’ of the same number).
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There is a concept to be learned here: the concept of invariance.
We want a transformation (a ‘shuffling of cards’) which leaves
the row sums invariant. It is usually worth introducing this
term to students at this point.

Activity I1l. The Diagonals

With or without the teacher’s help, most students, even as
young as 10 years old, can get the column sums to be the same.
Their square is now ‘semi-magic’. To get a fully magic square,
we need to get the two diagonals to add up to 15 as well.
Students usually have trouble with this step.

We can give them a hint, and reinforce the notion of invariant,
by showing them another transformation; one that leaves row
and column sums the same. This transformation consists in
‘transporting’ a whole row from the top to the bottom of the
array, or a whole column from the left to the right.

Here is an example of this transformation, which students
generally do not invent for themselves.

375 429 294
861 =~ 375 > 753
429 86 1 618

An additional hint that some students might need is the
question, “What number do you think should be in the middle?”
Most students will guess that 5 must be in the middle. The
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reason for that can be the subject of discussion—we will return
to it later on. However, for now a good guess is enough.

Having guessed that 5 must be in the middle, it is not hard to
see that at most two moves of the type described will suffice to
knock the configuration into ‘magic’ shape. Each move takes
the 5 one place horizontally or vertically, and the 5 cannot be
more than two such steps from the middle position. Students
will even find that this hint guides them to see which moves are
necessary.

With these hints, getting the diagonals to sum to 15, which
might seem the most difficult part, is in fact the easiest.

Activity IV: Symmetries of a square.

Students will have different-looking magic squares. As they
finish assignment 111, 1 have at least three of them put their
results on the board for all to see. | try to get, among the three
chosen solutions, two that differ by a line reflection, and two
that differ by a rotation.

I ask: How are these solutions the same, and how are they
different? There are many answers to this question, and the
discussion takes different turns, depending on what students
see. We outline below one possible path, trying to touch on
everything that may now come out. Nevertheless, in a
classroom, the order will certainly be different.
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The goal of the discussion is to move the class from looking at
individual magic squares to the relationships among them: to
the symmetries of the square that transform one solution into
another.

One thing students notice quickly is that the same numbers
appear in the same patterns in each solution. That is, the
solutions all have the same rows or columns, just in different
places. With this remark, I circle one row or column and ask
how its position differs in the different solutions. Students
quickly notice (if they have not already) that the other rows and
columns *‘move with’ the one circled.

What emerges is that the entire square is rotated or reflected in
a line to go from one solution to another. Students usually see
the reflections (“flips’) first. We can then elicit that there are
four of them: horizontal, vertical, and two diagonal flips.

The diagonal flips are seen last, but it is not particularly
difficult for students to see them. It is difficult, however, to
name them. (We will need symbols for the various symmetries
very soon, after students are made aware of them as object to
manipulate mentally.) In addition, here things depend on local
circumstance. When | teach in the US, | name the upper-left-
to-lower-right reflection “Seattle to Miami” (or S2M), and the
upper-right-to-lower-left reflection as “New York to Los
Angeles” (NY2LA). A look at the map of the US will show
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how this reminds students which diagonal is meant.
Nevertheless, of course this must be adapted to local maps.
Note that we are assuming that the map shows north on top,
which is true of virtually all maps the students use.

The rotations are easier to talk about, but harder to visualize.
Students may have to see all four of them (including the
identity rotation, by zero degrees) specifically enacted on one
particular magic square.

How do we get students to perceive each symmetry as an object
in itself? They must play with it in their minds. An easy way
is to ask repeatedly: How do we get from Square A to Square
B? Since the solutions ‘belong’ to different students, it is not
hard to get them interested in how their square can be
transformed into their neighbor’s square. With any luck, most
of the transformations appear among the students’ solutions.
However, we can elicit the others if there is at least one rotation
and at least one reflection.

A more advanced question is: starting with one solution, how
many more solutions can you get? Students quickly focus on
the shape of the square, using the ‘magic numbers’ simply as
markers or labels for the corners. That is the focus they will
need for the next set of insights.

A ‘symmetry’ of a figure is an isometry (rigid motion of the
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plane) which leaves the figure fixed. However, students may
not need this formal definition. Even without a complete
definition of symmetry or isometry, they will usually be able to
see that a square has eight symmetries: four rotations (including
rotation by zero degrees, which will take some explanation to
the class) and four line reflections. Moreover, in future, when
they are ready for a formal definition, they will be able to look
back at this example and draw from it the intuitions they will
need.

The eight symmetries of a square can be ‘applied’ to any one
magic square to produce all eight variants. For some classes, |
put these all up on the board. For others, | merely have them
imagine the eight positions.

Note that this does not answer the question of how many magic
squares there are whose entries are the numbers 1 through 9. It
merely tells us how many there are derived from any one magic
square. We will deal with the full question a bit later. Again,
the order of exposition can easily vary from class to class.

Activity V: The Group Structure of Symmetries of a Square
The next step in getting students to focus on the symmetries is
to talk about combining symmetries. This begins to develop
the group structure of the symmetries of a square. How far this
is taken in class depends on the goals of the instruction and the
background of the students.
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| start by taking three squares, for example:

294 672 618
753 159 753
618 834 294
(A) (B) (®)

I ask: How do you get from square (A) to square (B)? Students
will see that it is a rotation of 90 degrees clockwise. (I notate
this as roo.)

Then: How do you get from square (B) to square (C)? Student
will see that it is a reflection along the diagonal Seattle to
M|am| (stm).

At some point, it is useful to note that we can easily tell a
reflection from a rotation: A reflection leaves one of the rows,
columns, or diagonals in place. A rotation does not. In this
case, the diagonal 6-5-4 stays in place, so it is a reflection about
that line.

Then the crucial question: How could we get directly from
square (A) to square (C)? Students will see that the row 7-5-1
stays in place, so we get from (A) to (C) by a horizontal flip
(fn). We can write this as rgo * fsom = fh. Writing the fact this
way is an important step. When students can comprehend these
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symbols, they have made the transition from thinking of the
effect of a symmetry on a particular square to thinking of
symmetries as objects in themselves, which have properties
and can be operated with. Here, the operation ‘*’ means
‘composition of functions’. However, | usually read it as
‘followed by’. It may be important to have the students read it
themselves this way (rather than pronouncing it *star’).

Students can then practice composing different symmetries.
They will quickly discover the following facts:

a) Rotations compose easily: you just add the angles of
rotation, and subtract 360 if necessary.

b) The symmetry ro is special. You compose it with any other
symmetry, in any order (see below) and you just get the
other symmetry. Therefore, it is like the number O for
addition, or 1 for multiplication. It is an identity element.

c) Any reflection, composed with itself, is the identity.

d) Any reflection, composed with another reflection, ends up
a rotation.

e) The order in which you compose symmetries makes a
difference.
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These facts build towards an even greater abstraction, the group
structure of the symmetries of a square. This group (usually
called D4) is a non-commutative group of order 8.

Here are more advanced notes about these ‘facts’:

a)

b)

d)

The rotations form a subgroup of the group of symmetries
of a square. This subgroup has four elements, and is
isomorphic to the additive group of integers modulo 4.
Note that fact (c) states that the set consisting of any
reflection and the identity also forms a (tiny) subgroup, of
two elements.

Every group must have an identity element. Since this
group is not commutative, we must ensure that the identity
works from the left and from the right. This is easy to
verify in the present case.

We say that a line reflection is its own inverse. Every
element of a group must have an inverse, an element that
takes us back to the identity. Students who are ready for
this concept will be able to see what the inverses are for
each of the rotations, as well as for the reflections.

This statement is a general, and little-known, property of
line reflections. The composition of reflections in two
intersecting lines is always a rotation. The angle of
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rotation is double the angle formed by the two lines. Some
able students can be challenged to fill in the exceptional
case when the lines are parallel. The composition of
reflection in two parallel lines is a translation.

e) This note is particularly important, and worth eliciting
from students even if they are not ready for the other
advanced comments above. The operation of composition
in this group is not commutative.

It is useful to make a further note about commutativity, by
giving an example. For instance, take the example given above:

294 672 618
753 159 753
618 834 294
(A) (B) (®)

The example shows that reo * feom = fn. Composing in the
opposite order, students get:

294 276 492
753 951 357
618 438 816
(A) (B") (€)

This shows that fsom * rgo = fy, which is not the same. The
order of composition makes a difference. Students have not
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often seen a reasonable non-commutative operation. Certainly,
subtraction and division are not commutative. However, the
results of performing the operation in the ‘wrong’ order are
predictable: it is easy to relate the result of one order to the
result of the other. In the case of composition of symmetries,
the change in order can give an unexpected result.

Further exploration will show that reflections do not commute
with each other: changing the order of composition makes the
resulting rotation go in the opposite direction. In addition,
reflections do not commute with rotations: changing the order
of composition has an effect that is difficult to predict.

All these notes build toward topics in group theory that
generalize readily. For elementary or middle school students,
it is enough to comprehend these few special cases of much
more general results.

Activity VI: Uniqueness of the Magic Square

The title of this section is not quite correct. The magic square
with entries 1 through 9 is unique up to symmetries of the
square.

Nevertheless, we have not shown this yet. We have shown only
that there are 8 squares derived from any one by symmetry.
The following development shows that these solutions are all
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there are. | always make these observations, but | do not always
prove them formally, (as we will do below) and | do not always
note that they constitute a proof of uniqueness.

(A) The *magic sum’ must be 15.

Students will often construct a proof of this fact, but they may
not be able to express it accurately. They get the idea that 16 is
‘too big”and 14 is ‘too small’ as they experiment to get the rows
to be the same—the very first activity in this sequence.

With a little scaffolding, they can be led to the argument that
the sum of all the numbers from 1 to 9 is 45, so if they are
separated into three sets whose sum is the same, each sum must
be 45/3 = 15.

(B) The number 5 must be in the center.

Students will guess that this is true, and we have seen how they
can use this guess to construct one magic square. A proof of
this fact is more difficult. For students who do not know
algebra, we can use the following argument:

There are four sets of three-in-a-row that include the center:
horizontal, vertical and two diagonals. The sum of all these
rows will be 4x15 = 60. Then we note that this includes each
number exactly once, but the central number four times. Since
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the sum of all the numbers is 45, the difference 60 - 45 must
give us three copies of the central number. This difference is
15, so the central number must be 5.

ADit of reflection will show that this argument says a bit more.
Whatever the entries of a magic square, the magic sum is three
times the central number. (Alternatively, the central number is
1/3 the magic sum.) This will be a useful remark in later
developments.

Students who know algebra can be given this verbal argument,
then challenged them to write it down using algebra.

(C) The even numbers must be in the corners.

Students will probably not see this quickly, but respond quickly
when asked: “Which numbers are in the corners?” A proof of
this statement is a bit subtle. One argument goes as follows:

Once we place 5 in the centre, there are four even and four odd
numbers to place in the square. We will show that no even
number can be in the middle square of a row or column. For
example, suppose we put an even number to the right of the 5:

AB C
E 5 D (EforEven!)
FGH
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Looking at the middle row, we see that D must also be even,
since the three numbers in the middle row must sum to 15 (an
odd number).

Looking at the first column, we see that one of A or F must be
even (or else the sum of that column would be even). Without
loss of generality, we can assume that A is even. Then, looking
at the Seattle-to-Miami diameter, we see that H must be even.

This means that A, E, D, H are all even, so that the remaining
entries must be odd. However, this gets us into trouble.
Looking at the first row, this would mean that A+ B+ C is the
sum of one even and two odd numbers, so cannot be 15.

This is a difficult argument for many students. Not only is it a
proof by contradiction, in which they must imagine something
that in fact they cannot get an example for, but the chain of
inferences is rather long. 1 find it rare for students to come up
with a proof like this themselves. However, it is not so difficult
for them to follow, if laid out clearly. Later we will see how
one can tell if they have comprehended the argument.

Note that statements (A), (B), and (C) can be proved with
students independent of their knowledge of the symmetries of
a square: the two topics can be developed independently of
each other.
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Note further that statements (A), (B), and (C), taken together,
constitute a proof that the magic squares we have derived are
the only ones possible with the numbers 1 through 9. Indeed,
5 must be in the center, and 2 must be in one of the corners.
This puts 8 in the other corner, and the other two corners must
contain 4 and 6 in some order. The placement of 5 and the even
numbers determine the rest of the square, and it must be one of
those we have already considered.

Activity VII: New Magic Squares from Old.

The first six activities here introduce concepts from geometry
and group theory. This activity begins a new series, which
introduces concepts from linear algebra.

| usually start this activity when students have worked the
previous activities, but are fresh for a new start. | review the
magic squares we have constructed, putting at least one on the
board visible to students as they work. (This point will soon
become important.)

Then | give them cards numbered 2 through 10 (rather than 1
through 9), and ask them to construct a magic square with them.
There are in fact two interesting ways to do it. One way, the
Short Way, is something we will talk about later (if the reader
has not guessed it by now). Nevertheless, 90% of my students
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think of doing it the Long Way—uwhich has its own virtues.
The Long Way involves repeating the steps in construction in
Activities | — Ill. The virtue in it is that the students are not
repeating an algorithm. It is too early for the construction to be
ossified in their minds as an algorithm. They are repeating a
pattern of reasoning. In addition, recognising patterns of
reasoning is an important objective of our teaching.

We can take advantage of their review of the reasoning—which
happens naturally—by making conscious, or reviewing, the
notion of transformation (of a 3x3 array) and of invariants.
Often, these concepts will come alive with a second example.

As in Activities IV-VI, | put several examples of the completed
magic square on the board, and ask how they are the same and
how they are different. Of course, everything goes much more
quickly than the first time. Students immediately see the
rotations and reflections. These generally do not need
reinforcement.

What does need reinforcement is the logic leading to the
following questions:

1) What is the magic constant? Of course, it is the sum of the
entries divided by 3. This is already a generalization of the
previous result. (Advanced students will find this easy.)
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2) What number is in the middle? This repeat of the

3)

4)

reasoning gives us a chance to solidify the fact that the
middle number—of any 3x3 magic square—must be 1/3
the magic sum, or 1/9 the sum of the numbers. (This note
can be picked up on later, when students can be asked to
show that the sum of nine consecutive integers is a
multiple of 9.)

This time it is the odd numbers that end up in the corners,
and even for advanced students, a proof may require some
thinking. The pattern of reasoning is the same as in the
earlier case.

If students don’t see this already, | point out that statements
(1)-(3), together with what we know about symmetries of
a square, constitute a proof that the magic square we’ve
constructed in unique, up to symmetries?.

Then comes a dramatic moment in most classrooms. The Short
Way of doing this problem is simply to add 1 to each entry of
the original magic square. Most students do not see this at first,
but see it immediately when pointed out. Their reaction is that
they could kick themselves. | would encourage them to do so.
Kicking oneself is both good physical exercise and a useful

! The degree to which students recognize and repeat these patterns of
reasoning will show how much they assimilated them in the first set of
activities.
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habit of mind.

To increase the drama a bit, I try to make sure that one of the
new magic squares | have chosen to put up is in the same
position as an ‘old” magic square (numbers 1 through 9), so that
the Short Way is right in front of the students.

In working Activities | through 111, we sometimes get students
who complete the task long before others, or who have seen
and remembered the solution. They simply reproduce a magic
square with numbers 1 through 9 that they have seen before,
without going through any reasoning. For these students, we
can jump ahead to this activity, by taking the 1 in their magic
square and replacing it with 10. (This is easily done if using
playing cards for the numbers.) The square is of course no
longer magic, and the challenge is to restore the magic.
Replacing the 1 with 10 virtually assures that the student will
not discover the Short Way this time around.
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Activity VIII: Generalisations.

I then ask students the following questions, often without
actually constructing the magic squares;

1)

2)

3)

4)

How would you make a magic square with the numbers {3,
4,5....11}? The answer is not hard: add 2 to each entry of
the square from Activity I11.

How would you make a magic square with the numbers
{101, 102...109}? Answer: add 100. However, see the
next question.

How would you make a magic square with the numbers
{100, 200, 300...900}? Students may just answer that they
can put *00° after every entry of the old square. It is
important to elicit from them that we are actually
multiplying by 100.

How would you make a magic square with the numbers
{3,6,9, . .. 27}? Answer: multiply each number in the
original magic square by 3. (Some students may be able
to jump from question (1) to question (4) immediately,
without the scaffolding provided by questions (2) and (3).

This is a good place to stop and ask for generalizations. The
typical generalizations students point out are:
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a) You can multiply the entries of a magic square by any
constant, and it retains its magic.

b) You can add the same number to all the entries of any magic
square, and it retains its magic.

It is worth asking students what happens to the central number,
and thus to the magic constant, in each case. For (a), the magic
constant is multiplied the same number used for the whole
square. For (b), the magic constant increased by three times
the number used for the whole square.

However, we can go further, and the next step is a bit difficult.
| ask students:

(4) How do you create a magic square with the numbers {101,
201, 301....,901}?

They can do this easily, but the trick is to ask them how they do
it. Itisimportant to bring out is that they have done two things:
multiplied the original magic square by 100, and then added 1.
Then | ask them to make a magic square of the numbers {4, 7,
10, . . . 28}. This usually gives them pause. They recognize
that the numbers form an arithmetic progression (they will say
that they are ‘equally spaced’). It is often useful to put the
following chart on the board:
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5
10

13 12
16 15
19 18
22 21
25 24
28 27

Students will quickly recognize the second column as multiples
of 3 (the ‘three times table’) and then the first column as one
more than the multiples of 3. Therefore, they can make the new
magic square by multiply the original one by 3, then adding 1.

Now the lesson can take a whole new turn, about arithmetic
progression. | teach this topic as a generalization of the ‘Gauss’
trick of adding 1+ 2+ 3 +... + 100. This pedagogical technique
is well known, and | will not describe it here. | just leave the
reader with the thought that a door is open here for the
development of a whole chunk of valuable mathematics, and
will go on to another chunk of valuable mathematics.

The generalization we have come to now, which can be elicited
from the class, is this:

One can make a magic square from any arithmetic progression
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of nine elements. The square is unique, up to symmetries, and
the magic constant is three times the central entry.

(The statement about the numbers at the corners of the square
is harder to generalize in a useful way. | usually do not.)

Activity IX: Introduction to Vectors and Vector Spaces

(Disclaimer: This section is less an activity than a lesson plan.
It involves more intervention by the teacher than previous
activities. Most of what is explored is convention and notation.)

Now another critical juncture: rephrasing the generalization
above in a way that students can understand, but rarely generate
for themselves. If we drop the condition that the entries of a
magic square must be distinct (a tacit condition up to this point),
then we can say that the following (silly) square is *‘magic’:

111

111

111
(Note that the middle number is still 1/3 the magic constant.)
Then we can say that adding 1 to each entry of a magic square
is just ‘adding’ two magic squares term-by-term, as if they were
matrices:
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294 111 3105
753+ 111 = 86 4
618 111 729

Then we can elicit from the students the following
generalization:

Two magic squares can be added (term-by-term) and the
resulting square is still magic.

I have students experiment to see that this works, with two
squares that are not “silly’. For example:

294 3105 5 19 9
753+ 864 = 15 11 7 (¥
618 729 13 3 17

Students should check (a) that the new square is in fact magic,
and (b) that the magic sum is three times the central number.

And now some notation. We let letters and numbers stand for
magic squares. Therefore, if the original magic square (in some
fixed position) is M, then we can create M+1, M+2, M+100, etc.
by adding a constant to each term. This is a very natural
notation, which students accept readily. Note that we are using
the symbol ‘1’ to denote the magic square all of whose entries
are 1, and the symbol + to denote addition of squares, not just
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numbers. Students do not usually pick up on this subtlety.

We can also write 2M, 3M, 100M, etc., for the squares whose
entries are those of M multiplied by a constant. (Note that here
‘2’ is the number two, while in the last paragraph, ‘2’ is the
‘silly magic square’, all of whose entries are 2. Luckily, most
students simply do not notice this slight inconsistency in
notation.

Finally, we can write 2M + 3 for the square obtained by
multiplying M by 2, then adding 3. So we have a whole set of
magic squares, all of the form aM + B. The point of the next
few activities is to give this set a structure, the structure of a
vector space.

| start by looking at example (*) above and rewriting it in the
new notation:

M+ (M+1)=2M+1
(Advanced students may actually have recognised the square
on the right already, and written it down in aM+B form.)

Students can then practice the new notation, using the
following sort of question:

What is (2M) + (3M-1)? Answer: 5M —1. It is useful for them
to write the magic square specifically, after they have done the
algebra.
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The other way to practice this notation is to give students actual
magic squares to add, and then ask them to write the process
algebraically. 1 usually do not go this far, although an advanced
class—which is familiar with arithmetic progressions—might
find such questions useful.

Now some more terminology, which consolidates what we
have been talking.

When we multiply every entry in a magic square by a given
number, we say that we are scaling the square. There is actually
a metaphor here: rather than using the number 1’ to ‘measure’
the entries of the square, we are using the multiplier as a
measure. Instead of ‘2’ in the upper left-hand corner (in the
square M above), we have 2m, where m is the multiplier.
Therefore, it is like a scale on a map, where every centimeter
or inch must be multiplied by a particular number to give the
true distance.

Now we can say that magic squares M and N can be added and
scaled. In algebra, if M and N are magic squares, then aM +
bN is also a magic square, for numbers a and b.

The name for a type of quantity that can be added and scaled is
a vector. Some students may have heard this term before, and
perhaps even studied it, say in physics—depending on their
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grade and achievement level. It is a term that grows with the
student. At first, (usually) it is “a quantity which has magnitude
and direction’, an arrow that you can add and scale. Later it is
seen as an ordered n-tuple, which generalizes the dimension but
not the algebra. Finally, it is seen as an element of a set with
three operations obeying certain axioms. That is the ‘mature’
mathematical definition, and is a fruitful generalization of the
‘magnitude and direction’ idea.

The intent of these exercises is to provide an example of a
vector space which is not abstract, yet does not (immediately)
look like ordered n-tuples.

The next activity is intended to elicit the notion of a basis for a
vector space, and of its dimension.

Activity X: Dimension of the Vector Space of Magic Squares.
(1 do not usually introduce the term “vector space’ now. Just
‘vector’.)
Take a typical magic square, for example:

3105

86 4

729

Ask: If | erased the 10, could you reconstruct the magic square?
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This is easy, and students readily agree that they can. This
means that if they were given the magic square with the 10
missing, they would know what belongs there. Then erase the
4, and ask the same question. Again, students see that even
with the 10 and the 4 erased, the magic square can be
reconstructed.

Finally, we can challenge students: How many entries can you
erase, and then reconstruct the square? What is the minimal
amount of information you need to specify which magic square
this is?

This is a good activity for students to work on. There will be
varying results, of course. The final answer, which some
students will get, is that three (judiciously chosen) entries will
determine the whole magic square, for example:

3AB

C6 D

E2 F
As an example, let us reconstruct this square. The magic
constant, from our discussion, is 18. So F =9 and A =10. We
have

310 B
Co6 D
E 2 9

This configuration easily gives us B =5, which leads to D = 4.
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Students can readily recover the rest of the square from this.
Will any three entries in this position give us a magic square?
I give students an example:

m O o
NN oo >
M O W

Note that the 6 and the 5, in position, suggest the original
square M. However, the 2 in the bottom row spoils it. Is there
in fact such a magic square?

Again, repetition of reasoning pays off. The magic constant is
15, which gives F =4. Then E =9, so C =0 (Surprise!). Then
D =10 and B = 8, and the rest follows easily.

6 8 1

0 5 10

9 2 4
There are, of course, other orders in which to find the entries.
Note that when we get to the last number (whichever number
that is), there are two conditions to be satisfied, and they do not
conflict. In fact, they will never conflict, no matter what the
three original entries might be. This is ‘magic’ in itself.

Activity XI: Explaining the magic.

A little algebra will give the explanation. Here is a general
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solution.

X 2y -1z X+y+z
—2X+2y+ 2 y 2X -1
X+y-z z 2y — X

Now | ask students if these are the only three entries which
allow us to reconstruct the square. They quickly see that the
symmetries of a square give eight such entries, with a corner, a
middle entry, and the center.

There are other possibilities for three given entries to
reconstitute the magic square. Advanced students can work
these out algebraically. If the center entry is given, there is
essentially one other possibility:

X z —X+3y-12
—2X+4y -7 y 2X—-2y +z
X—y+z 2y -1z —X + 2y

If the center value is not given, the task is more difficult. One
must first derive the magic constant. In the case below (where
X, Y, z are given), we can let the constant be 3C, so that the top
middle entry must be 3C —x—y. Then, from the middle column
(which must add up to 3C), we know that the center entry is x
+y —z, so the magic constant C is three times this, or

3x + 3y — 3z. The other entries follow readily.

X 3C-x-y y
2y -2 C=x+y-z 2X-12
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2X+ y-2z z X+ 2y-2z

Students can look at other configurations. A good question to
ask is: Do three entries in the same row work?

Activity XII: A Basis.

The algebraic or arithmetic explorations above lead to the idea
that a magic square is determined by three well-chosen pieces
of information. In mathematical terms, this indicates that the
vector space is of dimension 3.

More formally, if we are given three particular vectors, we can
recreate all the others by adding and scaling!. Three such
vectors are called a basis for the vector space. For example,
for the vector space of points in (Euclidean) 3-space, the
vectors (1,0,0), (0,1,0), (0,0,1) form a basis. By scaling these
and adding the results, you can get any vector (a,b,c).

Bases are not unique. The 3-dimensional Euclidean vectors
can also be generated from the vectors (1,0,0), (1,1,0), (1,1,1).
The concept of basis leads to a coordinate representation of the
vectors in a vector space, which is often useful in computations.

! To be precise, a basis is a minimal set with this property: no basis vector
can be expressed as a linear combination of the other basis vectors. They
are linearly independent. But this notion can be left unspoken for many
classes.
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But it is a central fact—we will not prove it—that if a vector
space has a (finite) basis, then any two sets of basis vectors
have the same number of elements. This number is called the
dimension of the vector space.

Our explorations indicate that the dimension of our vector
space of 3x3 magic squares is 3. (Warning: this does not imply
that the dimension of the vector space of 4x4 magic squares
will be 4.) We can confirm this by finding three magic squares
that form a basis.

One nice way to do this is to map all the magic squares onto
the set of magic squares with magic constant 0 (or middle entry
0). We will call these the ‘zero squares’. This will expose the
structure of the magic square.

Any magic square can be represented as the sum of a zero
square and a constant square. And any such sum is magic. That
is, there is a one-to-one correspondence between the set of all
magic squares and the set of pairs, one of which is a zero square
and the other a constant square.

Note that the constant squares are all scaled multiples of the
square with all entries 1’s (the unit square). So if we can
represent a zero square as the sum of multiples of two other
squares, we have three squares that generate the whole set.
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Having agreed to this—or even if they come to see it later on--
students can be asked for the minimal information to generate
a zero square. They quickly see that a zero square is
antisymmetric: opposite entries (with respect to the center)
have opposite signs.

Having noted this, we can ask the students to fill in this zero
square:

with two entries given algebraically. This shows that with two
particular pieces of information, we can reconstruct the entire
zero square. The result is:

a b -a-b We call this magic square S,
-2a-b 0 2a+bh. and will use it below to get a
a+b b -a basis.

Nevertheless, we can also reconstruct a zero square with two
other pieces of information. For example, another possible
representation is:
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a -a-b b (Here the wupper left and
-a+b 0 a-b. upper right corners are
b atb -a given.)

Each of these, for suitable a and b, can represent any zero
square. Another way of saying this: for any zero-square, we
can find suitable numbers a and b so it is represented by one of
the squares above.

As an exercise, we can ask students to start with the magic
square from activity Ill, construct its related zero-square, and
then find a and b that puts it in the form of S.

There are other ways to choose two pieces of information that
determine a zero square. Advanced students can be asked to
count all such possibilities. They are given below. There are
only four possibilities, up to symmetry. Counting them is a
good exercise in symmetries of a square, and filling in the
representations is an exercise in algebra. Note that we must not
be given two opposite entries: each determines the other, and
that makes only one piece of information.

And now the square S above gives us a basis for our vector
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space. If we start with our first zero-square:

a b -a->b
—2a-b 0 2a+Db
a+b b -a

and set a=1, b =0 we get

1 0 -1
A= 2 0 2
1 0 -1

Thenwe seta =0, b =1 to get:

0 1 -1
B= -1 0 1
1 -1

For any zero square, we can find the numbers a, b so that aA +
Bb is this magic square. In addition, the representation is
unique. In formal language (which | do not always use), the
subspace of zero squares (for it is a subspace: it is closed under

addition) is of dimension 2.

How does this give a basis for the full set of magic squares?
Well, we can take the unit square C, consisting of all 1’s, and
add a suitable multiple to get any magic square at all. That is,
the three magic squares A, B, C form a basis for the vector space

of magic squares.
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Students can Dbe challenged with numerical examples.
Alternatively, they can be asked to construct another basis,
reviewing the reasoning of the discussion above and starting
with another set of two entries a, b, in different positions.

I have not introduced the terms linear combination, or linear
independence in this development. 1 usually leave that for a
more formal course. This discussion builds an example that
looks very different from the usual. When formal language is
introduce, students will have something in their minds that it
describes.

There is even more that we can do with this construction. Once
we have a basis, we can use the coordinates (a,b,c) in the
representation aA + bB + cC to specify a given magic square.
Then we can visualize the space as 3-dimensional, and even
define a metric (distance between two magic squares) or norm
(distance to zero, a sort of ‘absolute value’). We can visualize
the sum of two magic squares as addition of ‘arrow’ vectors,
and scaling as, well, scaling of the arrows.

This is all an exercise is re-formulating a situation which is
suitable (and usually easy) for advanced students. For these
students, we can also go back to the symmetries of a square and
introduce an equivalence relation. For each vector (magic
square), there are seven other ‘equivalent’ vectors that
represent the squares obtained by symmetry. What is the
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geometry of this situation? Where do those other vectors lie?
In some (simple) cases, a magic square may itself be symmetric.
What then happens to the ‘symmetric’ vectors? How far one
goes with these explorations depends on the class and on its
learning goals.

Activity X111l (Epilogue): Magic squares and tic-tac-toe

I am tempted to call this section ‘dessert’ (for the meal). | use
this activity at any time in the sequence. Students enjoy it and
remember it whenever it comes up.

I have students play the ‘Fifteen Game’:

(@) Write the numbers 1 through 9 on the board in a straight
line.

(b) The first person “takes” a number by crossing it out and
writing it on his side of the board.

(c) The winner is the first person who makes a sum of 15 with
exactly 3 numbers.

For example, after three turns of play, suppose Adam has
collected the numbers {3,8,1} and Betty has collected the
numbers {6,9,2}. Neither has won, although Betty’s numbers
6 and 9 add up to 15. Betty would need three numbers with
this sum to win.
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Nevertheless, suppose it is Adam’s turn. The 4 is left on the
board. If Adam takes it, he will win, because 3 + 8 + 4 = 15.

The first time they play it, | play an ‘exhibition’ game in front
of the class, against a brave student. 1 tell the student that she
or he will not lose. (In addition, I rig the game so that the
student wins.) This is to clinch their understanding of the rules,
which are not easy to integrate just from reading.

Then | have two students play in front of the class, with the
class calling out advice. | do this at various odd times during
the sequence of lessons. The activity need not be done all at
once.

Eventually, and sometimes over several weeks, students see the
following:

1) When players get good, most games end in a draw. There
are no more numbers left to choose, and no play has three
numbers summing to 15.

2) The strategy in play often consists of ‘blocking’ the other
player.

3) The number 5 is key, as well as the numbers that add up to
10.
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Sometimes students actually say, “It’s like tic-tac-toe”. | ask
them how, but they usually cannot verbalize the similarity. It
is just the feeling they get in playing the game.

Nevertheless, in fact this game is exactly tic-tac-toe, played on
a magic square! Eventually I show them this, by recording the
moves of a game as x’s and 0’s on a magic square. As two
students play, | record their moves off on the side by crossing
out (x) the first player’s choices, and circling (0) the second
player. No words are necessary.

The underlying mathematical idea here is that of isomorphism.
The two games are really the same game in two different guises,
or notations. Isomorphism is a major concept pervading all of
mathematics. The concept is expressed in the formal language
of functions and operations, but that is not the point of this
lesson. It is a bit difficult, but can be done, to define the game
as a mathematical object, and the isomorphism as a function on
the object.

What is the point then? Well, to have fun, and at the same time
lay the intuitive groundwork for further understanding. In my
view, both these things should happen as often as possible in
any mathematics classroom.
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